Module quasardb.pandas

Expand source code
# pylint: disable=C0103,C0111,C0302,R0903

# Copyright (c) 2009-2021, quasardb SAS. All rights reserved.
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
#    * Redistributions of source code must retain the above copyright
#      notice, this list of conditions and the following disclaimer.
#    * Redistributions in binary form must reproduce the above copyright
#      notice, this list of conditions and the following disclaimer in the
#      documentation and/or other materials provided with the distribution.
#    * Neither the name of quasardb nor the names of its contributors may
#      be used to endorse or promote products derived from this software
#      without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY QUASARDB AND CONTRIBUTORS ``AS IS'' AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE REGENTS AND CONTRIBUTORS BE LIABLE FOR ANY
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#

import quasardb
import logging
import quasardb.numpy as qdbnp

from datetime import datetime
from functools import partial

logger = logging.getLogger('quasardb.pandas')

class PandasRequired(ImportError):
    """
    Exception raised when trying to use QuasarDB pandas integration, but
    pandas has not been installed.
    """
    pass

try:
    import numpy as np
    import numpy.ma as ma
    import pandas as pd
    from pandas.core.api import DataFrame, Series
    from pandas.core.base import PandasObject

except ImportError:
    raise PandasRequired(
        "The pandas library is required to handle pandas data formats")


# Constant mapping of numpy dtype to QuasarDB column type
# TODO(leon): support this natively in qdb C api ? we have everything we need
#             to understand dtypes.
_dtype_map = {
    np.dtype('int64'): quasardb.ColumnType.Int64,
    np.dtype('int32'): quasardb.ColumnType.Int64,
    np.dtype('float64'): quasardb.ColumnType.Double,
    np.dtype('object'): quasardb.ColumnType.String,
    np.dtype('M8[ns]'): quasardb.ColumnType.Timestamp,
    np.dtype('datetime64[ns]'): quasardb.ColumnType.Timestamp,

    'int64': quasardb.ColumnType.Int64,
    'int32': quasardb.ColumnType.Int64,
    'float32': quasardb.ColumnType.Double,
    'float64': quasardb.ColumnType.Double,
    'timestamp': quasardb.ColumnType.Timestamp,
    'string': quasardb.ColumnType.String,
    'bytes': quasardb.ColumnType.Blob,

    'floating': quasardb.ColumnType.Double,
    'integer': quasardb.ColumnType.Int64,
    'bytes': quasardb.ColumnType.Blob,
    'string': quasardb.ColumnType.String,
    'datetime64':  quasardb.ColumnType.Timestamp
}

def read_series(table, col_name, ranges=None):
    """
    Read a Pandas Timeseries from a single column.

    Parameters:
    -----------

    table : quasardb.Timeseries
      QuasarDB Timeseries table object, e.g. qdb_cluster.table('my_table')

    col_name : str
      Name of the column to read.

    ranges : list
      A list of ranges to read, represented as tuples of Numpy datetime64[ns] objects.
    """
    read_with = {
        quasardb.ColumnType.Double: table.double_get_ranges,
        quasardb.ColumnType.Blob: table.blob_get_ranges,
        quasardb.ColumnType.String: table.string_get_ranges,
        quasardb.ColumnType.Int64: table.int64_get_ranges,
        quasardb.ColumnType.Timestamp: table.timestamp_get_ranges,
        quasardb.ColumnType.Symbol: table.string_get_ranges,
    }

    kwargs = {
        'column': col_name
    }

    if ranges is not None:
        kwargs['ranges'] = ranges

    # Dispatch based on column type
    t = table.column_type_by_id(col_name)

    logger.info("reading Series from column %s.%s with type %s",
                 table.get_name(), col_name, t)

    res = (read_with[t])(**kwargs)

    return Series(res[1], index=res[0])


def write_series(series,
                 table,
                 col_name,
                 infer_types=True,
                 dtype=None):
    """
    Writes a Pandas Timeseries to a single column.

    Parameters:
    -----------

    series : pandas.Series
      Pandas Series, with a numpy.datetime64[ns] as index. Underlying data will be attempted
      to be transformed to appropriate QuasarDB type.

    table : quasardb.Timeseries
      QuasarDB Timeseries table object, e.g. qdb_cluster.table('my_table')

    col_name : str
      Column name to store data in.
    """

    logger.debug("write_series, table=%s, col_name=%s, infer_types=%s, dtype=%s", table.get_name(), col_name, infer_types, dtype)

    data = None
    index = None

    data = ma.masked_array(series.to_numpy(copy=False),
                           mask=series.isna())

    if infer_types is True:
        index = series.index.to_numpy('datetime64[ns]', copy=False)
    else:
        index = series.index.to_numpy(copy=False)

    assert data is not None
    assert index is not None

    return qdbnp.write_array(data=data,
                             index=index,
                             table=table,
                             column=col_name,
                             dtype=dtype,
                             infer_types=infer_types)

def query(cluster: quasardb.Cluster,
          query,
          index=None,
          blobs=False,
          numpy=True):
    """
    Execute a query and return the results as DataFrames. Returns a dict of
    tablename / DataFrame pairs.

    Parameters:
    -----------

    cluster : quasardb.Cluster
      Active connection to the QuasarDB cluster

    query : str
      The query to execute.

    blobs : bool or list
      Determines which QuasarDB blob-columns should be returned as bytearrays; otherwise
      they are returned as UTF-8 strings.

      True means every blob column should be returned as byte-array, or a list will
      specify which specific columns. Defaults to false, meaning all blobs are returned
      as strings.

    """
    logger.debug("querying and returning as DataFrame: %s", query)
    (index, m) = qdbnp.query(cluster, query, index=index, dict=True)
    df = pd.DataFrame(m)

    df.set_index(index, inplace=True)
    return df

def read_dataframe(table, row_index=False, columns=None, ranges=None):
    """
    Read a Pandas Dataframe from a QuasarDB Timeseries table.

    Parameters:
    -----------

    table : quasardb.Timeseries
      QuasarDB Timeseries table object, e.g. qdb_cluster.table('my_table')

    columns : optional list
      List of columns to read in dataframe. The timestamp column '$timestamp' is
      always read.

      Defaults to all columns.

    row_index: boolean
      Whether or not to index by rows rather than timestamps. Set to true if your
      dataset may contains null values and multiple rows may use the same timestamps.
      Note: using row_index is significantly slower.
      Defaults to false.

    ranges: optional list
      A list of time ranges to read, represented as tuples of Numpy datetime64[ns] objects.
      Defaults to the entire table.

    """

    if columns is None:
        columns = list(c.name for c in table.list_columns())

    if not row_index:
        xs = dict((c, (read_series(table, c, ranges))) for c in columns)
        return DataFrame(data=xs)

    kwargs = {
        'columns': columns
    }
    if ranges:
        kwargs['ranges'] = ranges

    logger.debug("reading DataFrame from bulk reader")

    reader = table.reader(**kwargs)
    xs = []
    for row in reader:
        xs.append(row.copy())

    columns.insert(0, '$timestamp')

    logger.debug(
        "read %d rows, returning as DataFrame with %d columns",
        len(xs),
        len(columns))

    return DataFrame(data=xs, columns=columns)

def _extract_columns(df, cinfos):
    """
    Converts dataframe to a number of numpy arrays, one for each column.

    Arrays will be indexed by relative offset, in the same order as the table's columns.
    If a table column is not present in the dataframe, it it have a None entry.
    If a dataframe column is not present in the table, it will be ommitted.
    """
    ret = {}

    # Grab all columns from the DataFrame in the order of table columns,
    # put None if not present in df.
    for i in range(len(cinfos)):
        (cname, ctype) = cinfos[i]
        xs = None

        if cname in df.columns:
            arr = df[cname].array
            ret[cname] = ma.masked_array(arr.to_numpy(copy=False),
                                         mask=arr.isna())

    return ret

def write_dataframe(
        df,
        cluster,
        table,
        dtype=None,
        create=False,
        shard_size=None,
        _async=False,
        fast=False,
        truncate=False,
        deduplicate=False,
        deduplication_mode='drop',
        infer_types=True,
        writer=None):
    """
    Store a dataframe into a table with the pin column API.

    Parameters:
    -----------

    df: pandas.DataFrame
      The pandas dataframe to store.

    cluster: quasardb.Cluster
      Active connection to the QuasarDB cluster

    table: quasardb.Timeseries or str
      Either a string or a reference to a QuasarDB Timeseries table object.
      For example, 'my_table' or cluster.table('my_table') are both valid values.

    dtype: optional dtype, list of dtype, or dict of dtype
      Optional data type to force. If a single dtype, will force that dtype to all
      columns. If list-like, will map dtypes to dataframe columns by their offset.
      If dict-like, will map dtypes to dataframe columns by their label.

      If a dtype for a column is provided in this argument, and infer_types is also
      True, this argument takes precedence.

    create: optional bool
      Whether to create the table. Defaults to false.

    shard_size: optional datetime.timedelta
      The shard size of the timeseries you wish to create.

    deduplicate: bool or list[str]
      Enables server-side deduplication of data when it is written into the table.
      When True, automatically deduplicates rows when all values of a row are identical.
      When a list of strings is provided, deduplicates only based on the values of
      these columns.

      Defaults to False.

    infer_types: optional bool
      If true, will attemp to convert types from Python to QuasarDB natives types if
      the provided dataframe has incompatible types. For example, a dataframe with integers
      will automatically convert these to doubles if the QuasarDB table expects it.

      **Important**: as conversions are expensive and often the majority of time spent
      when inserting data into QuasarDB, we strongly recommend setting this to ``False``
      for performance-sensitive code.

    truncate: optional bool
      Truncate (also referred to as upsert) the data in-place. Will detect time range to truncate
      from the time range inside the dataframe.

      Defaults to False.

    _async: optional bool
      If true, uses asynchronous insertion API where commits are buffered server-side and
      acknowledged before they are written to disk. If you insert to the same table from
      multiple processes, setting this to True may improve performance.

      Defaults to False.

    fast: optional bool
      Whether to use 'fast push'. If you incrementally add small batches of data to table,
      you may see better performance if you set this to True.

      Defaults to False.

    """

    logger.info("quasardb.pandas.write_dataframe, create = %s, dtype = %s", create, dtype)
    assert isinstance(df, pd.DataFrame)

    # Acquire reference to table if string is provided
    if isinstance(table, str):
        table = cluster.table(table)

    # Create table if requested
    if create:
        _create_table_from_df(df, table, shard_size)

    # Create batch column info from dataframe
    if writer is None:
        writer = cluster.pinned_writer(table)

    cinfos = [(x.name, x.type) for x in writer.column_infos()]

    if not df.index.is_monotonic_increasing:
        logger.warn("dataframe index is unsorted, resorting dataframe based on index")
        df = df.sort_index().reindex()

    # We pass everything else to our qdbnp.write_arrays function, as generally speaking
    # it is (much) more sensible to deal with numpy arrays than Pandas dataframes:
    # pandas has the bad habit of wanting to cast data to different types if your data
    # is sparse, most notably forcing sparse integer arrays to floating points.
    timestamps = df.index.to_numpy(copy=False,
                                       dtype='datetime64[ns]')
    data = _extract_columns(df, cinfos)

    return qdbnp.write_arrays(data, cluster, table,
                              index=timestamps,
                              dtype=dtype,
                              _async=_async,
                              fast=fast,
                              truncate=truncate,
                              deduplicate=deduplicate,
                              deduplication_mode=deduplication_mode,
                              infer_types=infer_types,
                              writer=writer)


def write_pinned_dataframe(*args, **kwargs):
    """
    Legacy wrapper around write_dataframe()
    """
    logger.warn("write_pinned_dataframe is deprecated and will be removed in a future release.")
    logger.warn("Please use write_dataframe directly instead")
    return write_dataframe(*args, **kwargs)


def _create_table_from_df(df, table, shard_size=None):
    cols = list()

    dtypes = _get_inferred_dtypes(df)

    logger.info("got inferred dtypes: %s", dtypes)
    for c in df.columns:
        dt = dtypes[c]
        ct = _dtype_to_column_type(df[c].dtype, dt)
        logger.debug("probed pandas dtype %s to inferred dtype %s and map to quasardb column type %s", df[c].dtype, dt, ct)
        cols.append(quasardb.ColumnInfo(ct, c))

    try:
        if not shard_size:
            table.create(cols)
        else:
            table.create(cols, shard_size)
    except quasardb.quasardb.AliasAlreadyExistsError:
        # TODO(leon): warn? how?
        pass

    return table


def _dtype_to_column_type(dt, inferred):
    res = _dtype_map.get(inferred, None)
    if res is None:
        res = _dtype_map.get(dt, None)

    if res is None:
        raise ValueError("Incompatible data type: ", dt)

    return res


def _get_inferred_dtypes(df):
    dtypes = dict()
    for i in range(len(df.columns)):
        c = df.columns[i]
        dt = pd.api.types.infer_dtype(df[c].values)
        logger.debug("Determined dtype of column %s to be %s", c, dt)
        dtypes[c] = dt
    return dtypes


def _get_inferred_dtypes_indexed(df):
    dtypes = _get_inferred_dtypes(df)
    # Performance improvement: avoid a expensive dict lookups by indexing
    # the column types by relative offset within the df.
    return list(dtypes[c] for c in df.columns)

Functions

def query(cluster, query, index=None, blobs=False, numpy=True)

Execute a query and return the results as DataFrames. Returns a dict of tablename / DataFrame pairs.

Parameters:

cluster : quasardb.Cluster Active connection to the QuasarDB cluster

query : str The query to execute.

blobs : bool or list Determines which QuasarDB blob-columns should be returned as bytearrays; otherwise they are returned as UTF-8 strings.

True means every blob column should be returned as byte-array, or a list will specify which specific columns. Defaults to false, meaning all blobs are returned as strings.

Expand source code
def query(cluster: quasardb.Cluster,
          query,
          index=None,
          blobs=False,
          numpy=True):
    """
    Execute a query and return the results as DataFrames. Returns a dict of
    tablename / DataFrame pairs.

    Parameters:
    -----------

    cluster : quasardb.Cluster
      Active connection to the QuasarDB cluster

    query : str
      The query to execute.

    blobs : bool or list
      Determines which QuasarDB blob-columns should be returned as bytearrays; otherwise
      they are returned as UTF-8 strings.

      True means every blob column should be returned as byte-array, or a list will
      specify which specific columns. Defaults to false, meaning all blobs are returned
      as strings.

    """
    logger.debug("querying and returning as DataFrame: %s", query)
    (index, m) = qdbnp.query(cluster, query, index=index, dict=True)
    df = pd.DataFrame(m)

    df.set_index(index, inplace=True)
    return df
def read_dataframe(table, row_index=False, columns=None, ranges=None)

Read a Pandas Dataframe from a QuasarDB Timeseries table.

Parameters:

table : quasardb.Timeseries QuasarDB Timeseries table object, e.g. qdb_cluster.table('my_table')

columns : optional list List of columns to read in dataframe. The timestamp column '$timestamp' is always read.

Defaults to all columns.

row_index: boolean Whether or not to index by rows rather than timestamps. Set to true if your dataset may contains null values and multiple rows may use the same timestamps. Note: using row_index is significantly slower. Defaults to false.

ranges: optional list A list of time ranges to read, represented as tuples of Numpy datetime64[ns] objects. Defaults to the entire table.

Expand source code
def read_dataframe(table, row_index=False, columns=None, ranges=None):
    """
    Read a Pandas Dataframe from a QuasarDB Timeseries table.

    Parameters:
    -----------

    table : quasardb.Timeseries
      QuasarDB Timeseries table object, e.g. qdb_cluster.table('my_table')

    columns : optional list
      List of columns to read in dataframe. The timestamp column '$timestamp' is
      always read.

      Defaults to all columns.

    row_index: boolean
      Whether or not to index by rows rather than timestamps. Set to true if your
      dataset may contains null values and multiple rows may use the same timestamps.
      Note: using row_index is significantly slower.
      Defaults to false.

    ranges: optional list
      A list of time ranges to read, represented as tuples of Numpy datetime64[ns] objects.
      Defaults to the entire table.

    """

    if columns is None:
        columns = list(c.name for c in table.list_columns())

    if not row_index:
        xs = dict((c, (read_series(table, c, ranges))) for c in columns)
        return DataFrame(data=xs)

    kwargs = {
        'columns': columns
    }
    if ranges:
        kwargs['ranges'] = ranges

    logger.debug("reading DataFrame from bulk reader")

    reader = table.reader(**kwargs)
    xs = []
    for row in reader:
        xs.append(row.copy())

    columns.insert(0, '$timestamp')

    logger.debug(
        "read %d rows, returning as DataFrame with %d columns",
        len(xs),
        len(columns))

    return DataFrame(data=xs, columns=columns)
def read_series(table, col_name, ranges=None)

Read a Pandas Timeseries from a single column.

Parameters:

table : quasardb.Timeseries QuasarDB Timeseries table object, e.g. qdb_cluster.table('my_table')

col_name : str Name of the column to read.

ranges : list A list of ranges to read, represented as tuples of Numpy datetime64[ns] objects.

Expand source code
def read_series(table, col_name, ranges=None):
    """
    Read a Pandas Timeseries from a single column.

    Parameters:
    -----------

    table : quasardb.Timeseries
      QuasarDB Timeseries table object, e.g. qdb_cluster.table('my_table')

    col_name : str
      Name of the column to read.

    ranges : list
      A list of ranges to read, represented as tuples of Numpy datetime64[ns] objects.
    """
    read_with = {
        quasardb.ColumnType.Double: table.double_get_ranges,
        quasardb.ColumnType.Blob: table.blob_get_ranges,
        quasardb.ColumnType.String: table.string_get_ranges,
        quasardb.ColumnType.Int64: table.int64_get_ranges,
        quasardb.ColumnType.Timestamp: table.timestamp_get_ranges,
        quasardb.ColumnType.Symbol: table.string_get_ranges,
    }

    kwargs = {
        'column': col_name
    }

    if ranges is not None:
        kwargs['ranges'] = ranges

    # Dispatch based on column type
    t = table.column_type_by_id(col_name)

    logger.info("reading Series from column %s.%s with type %s",
                 table.get_name(), col_name, t)

    res = (read_with[t])(**kwargs)

    return Series(res[1], index=res[0])
def write_dataframe(df, cluster, table, dtype=None, create=False, shard_size=None, fast=False, truncate=False, deduplicate=False, deduplication_mode='drop', infer_types=True, writer=None)

Store a dataframe into a table with the pin column API.

Parameters:

df: pandas.DataFrame The pandas dataframe to store.

cluster: quasardb.Cluster Active connection to the QuasarDB cluster

table: quasardb.Timeseries or str Either a string or a reference to a QuasarDB Timeseries table object. For example, 'my_table' or cluster.table('my_table') are both valid values.

dtype: optional dtype, list of dtype, or dict of dtype Optional data type to force. If a single dtype, will force that dtype to all columns. If list-like, will map dtypes to dataframe columns by their offset. If dict-like, will map dtypes to dataframe columns by their label.

If a dtype for a column is provided in this argument, and infer_types is also True, this argument takes precedence.

create: optional bool Whether to create the table. Defaults to false.

shard_size: optional datetime.timedelta The shard size of the timeseries you wish to create.

deduplicate: bool or list[str] Enables server-side deduplication of data when it is written into the table. When True, automatically deduplicates rows when all values of a row are identical. When a list of strings is provided, deduplicates only based on the values of these columns.

Defaults to False.

infer_types: optional bool If true, will attemp to convert types from Python to QuasarDB natives types if the provided dataframe has incompatible types. For example, a dataframe with integers will automatically convert these to doubles if the QuasarDB table expects it.

Important: as conversions are expensive and often the majority of time spent when inserting data into QuasarDB, we strongly recommend setting this to False for performance-sensitive code.

truncate: optional bool Truncate (also referred to as upsert) the data in-place. Will detect time range to truncate from the time range inside the dataframe.

Defaults to False.

_async: optional bool If true, uses asynchronous insertion API where commits are buffered server-side and acknowledged before they are written to disk. If you insert to the same table from multiple processes, setting this to True may improve performance.

Defaults to False.

fast: optional bool Whether to use 'fast push'. If you incrementally add small batches of data to table, you may see better performance if you set this to True.

Defaults to False.

Expand source code
def write_dataframe(
        df,
        cluster,
        table,
        dtype=None,
        create=False,
        shard_size=None,
        _async=False,
        fast=False,
        truncate=False,
        deduplicate=False,
        deduplication_mode='drop',
        infer_types=True,
        writer=None):
    """
    Store a dataframe into a table with the pin column API.

    Parameters:
    -----------

    df: pandas.DataFrame
      The pandas dataframe to store.

    cluster: quasardb.Cluster
      Active connection to the QuasarDB cluster

    table: quasardb.Timeseries or str
      Either a string or a reference to a QuasarDB Timeseries table object.
      For example, 'my_table' or cluster.table('my_table') are both valid values.

    dtype: optional dtype, list of dtype, or dict of dtype
      Optional data type to force. If a single dtype, will force that dtype to all
      columns. If list-like, will map dtypes to dataframe columns by their offset.
      If dict-like, will map dtypes to dataframe columns by their label.

      If a dtype for a column is provided in this argument, and infer_types is also
      True, this argument takes precedence.

    create: optional bool
      Whether to create the table. Defaults to false.

    shard_size: optional datetime.timedelta
      The shard size of the timeseries you wish to create.

    deduplicate: bool or list[str]
      Enables server-side deduplication of data when it is written into the table.
      When True, automatically deduplicates rows when all values of a row are identical.
      When a list of strings is provided, deduplicates only based on the values of
      these columns.

      Defaults to False.

    infer_types: optional bool
      If true, will attemp to convert types from Python to QuasarDB natives types if
      the provided dataframe has incompatible types. For example, a dataframe with integers
      will automatically convert these to doubles if the QuasarDB table expects it.

      **Important**: as conversions are expensive and often the majority of time spent
      when inserting data into QuasarDB, we strongly recommend setting this to ``False``
      for performance-sensitive code.

    truncate: optional bool
      Truncate (also referred to as upsert) the data in-place. Will detect time range to truncate
      from the time range inside the dataframe.

      Defaults to False.

    _async: optional bool
      If true, uses asynchronous insertion API where commits are buffered server-side and
      acknowledged before they are written to disk. If you insert to the same table from
      multiple processes, setting this to True may improve performance.

      Defaults to False.

    fast: optional bool
      Whether to use 'fast push'. If you incrementally add small batches of data to table,
      you may see better performance if you set this to True.

      Defaults to False.

    """

    logger.info("quasardb.pandas.write_dataframe, create = %s, dtype = %s", create, dtype)
    assert isinstance(df, pd.DataFrame)

    # Acquire reference to table if string is provided
    if isinstance(table, str):
        table = cluster.table(table)

    # Create table if requested
    if create:
        _create_table_from_df(df, table, shard_size)

    # Create batch column info from dataframe
    if writer is None:
        writer = cluster.pinned_writer(table)

    cinfos = [(x.name, x.type) for x in writer.column_infos()]

    if not df.index.is_monotonic_increasing:
        logger.warn("dataframe index is unsorted, resorting dataframe based on index")
        df = df.sort_index().reindex()

    # We pass everything else to our qdbnp.write_arrays function, as generally speaking
    # it is (much) more sensible to deal with numpy arrays than Pandas dataframes:
    # pandas has the bad habit of wanting to cast data to different types if your data
    # is sparse, most notably forcing sparse integer arrays to floating points.
    timestamps = df.index.to_numpy(copy=False,
                                       dtype='datetime64[ns]')
    data = _extract_columns(df, cinfos)

    return qdbnp.write_arrays(data, cluster, table,
                              index=timestamps,
                              dtype=dtype,
                              _async=_async,
                              fast=fast,
                              truncate=truncate,
                              deduplicate=deduplicate,
                              deduplication_mode=deduplication_mode,
                              infer_types=infer_types,
                              writer=writer)
def write_pinned_dataframe(*args, **kwargs)

Legacy wrapper around write_dataframe()

Expand source code
def write_pinned_dataframe(*args, **kwargs):
    """
    Legacy wrapper around write_dataframe()
    """
    logger.warn("write_pinned_dataframe is deprecated and will be removed in a future release.")
    logger.warn("Please use write_dataframe directly instead")
    return write_dataframe(*args, **kwargs)
def write_series(series, table, col_name, infer_types=True, dtype=None)

Writes a Pandas Timeseries to a single column.

Parameters:

series : pandas.Series Pandas Series, with a numpy.datetime64[ns] as index. Underlying data will be attempted to be transformed to appropriate QuasarDB type.

table : quasardb.Timeseries QuasarDB Timeseries table object, e.g. qdb_cluster.table('my_table')

col_name : str Column name to store data in.

Expand source code
def write_series(series,
                 table,
                 col_name,
                 infer_types=True,
                 dtype=None):
    """
    Writes a Pandas Timeseries to a single column.

    Parameters:
    -----------

    series : pandas.Series
      Pandas Series, with a numpy.datetime64[ns] as index. Underlying data will be attempted
      to be transformed to appropriate QuasarDB type.

    table : quasardb.Timeseries
      QuasarDB Timeseries table object, e.g. qdb_cluster.table('my_table')

    col_name : str
      Column name to store data in.
    """

    logger.debug("write_series, table=%s, col_name=%s, infer_types=%s, dtype=%s", table.get_name(), col_name, infer_types, dtype)

    data = None
    index = None

    data = ma.masked_array(series.to_numpy(copy=False),
                           mask=series.isna())

    if infer_types is True:
        index = series.index.to_numpy('datetime64[ns]', copy=False)
    else:
        index = series.index.to_numpy(copy=False)

    assert data is not None
    assert index is not None

    return qdbnp.write_array(data=data,
                             index=index,
                             table=table,
                             column=col_name,
                             dtype=dtype,
                             infer_types=infer_types)

Classes

class PandasRequired (...)

Exception raised when trying to use QuasarDB pandas integration, but pandas has not been installed.

Expand source code
class PandasRequired(ImportError):
    """
    Exception raised when trying to use QuasarDB pandas integration, but
    pandas has not been installed.
    """
    pass

Ancestors

  • builtins.ImportError
  • builtins.Exception
  • builtins.BaseException